首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   2篇
废物处理   2篇
环保管理   1篇
综合类   3篇
基础理论   4篇
污染及防治   6篇
评价与监测   1篇
社会与环境   2篇
  2023年   1篇
  2021年   4篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2005年   2篇
  2002年   1篇
排序方式: 共有19条查询结果,搜索用时 62 毫秒
1.
Environment, Development and Sustainability - Good air quality is highly essential to the well-being of mankind, all living organisms and the environment. The quality of air is degrading at a...  相似文献   
2.
Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m~2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m~2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.  相似文献   
3.
Preservation or curing of hides and skins is performed as the primary step of leather processing. Common salt is employed as the conventional agent for curing purpose. Use of salt enhances the pollution load of tannery effluent which becomes highly contaminated with increased total dissolved solids and chlorides. To overcome this hurdle, researchers are in constant search of alternative preservation techniques which are either totally void of salt or use only a meager amount of salt. In the present study, we had explored the possibility of using Semecarpus anacardium nut extract as an alternative to salt for the curing process by assessing different parameters like hair slip, putrefaction odor, volatile nitrogen content, moisture content, bacterial count, and shrinkage temperature in comparison to the salt curing method. The antibacterial property of the plant extract was also investigated. The results obtained substantiated that the nut extract of S. anacardium effectively could preserve the skins for more than a month, by its antibacterial activity along with the dehydrating property of acetone.  相似文献   
4.
Single-chamber sediment microbial fuel cells(SSMFCs) have received considerable attention nowadays because of their unique dual-functionality of power generation and enhancement of wastewater treatment performance. Thus, scaling up or upgrading SSMFCs for enhanced and efficient performance is a highly crucial task. Therefore, in order to achieve this goal, an innovative physical technique of using interface layers with four different pore sizes embedded in the middle of SSMFCs was utilized in this study.Experimental results showed that the performance of SSMFCs employing an interface layer was improved regardless of the pore size of the interface material, compared to those without such layers. The use of an interface layer resulted in a positive and significant effect on the performance of SSMFCs because of the effective prevention of oxygen diffusion from the cathode to the anode. Nevertheless, when a smaller pore size interface was utilized, better power performance and COD degradation were observed. A maximum power density of 0.032 mW/m~2 and COD degradation of 47.3% were obtained in the case of an interface pore size of 0.28 μm. The findings in this study are of significance to promote the future practical application of SSMFCs in wastewater treatment plants.  相似文献   
5.
Ensuring an adequate, reliable, clean, and affordable water supply for citizens and industries requires informed, long-range water supply planning, which is critically important for water security. A balance between water supply and demand must be considered for a long-term plan. However, water demand projections are often highly uncertain. Climate change could impact the hydrologic processes, and consequently, threaten water supply. Thus, understanding the uncertainties in future water demand and climate is critical for developing a sound water supply plan. In Illinois, regional water supply planning attempts to explore the impacts of future water demand and climate on water supply using scenario analyses and hydrologic modeling. This study is aimed at developing a water supply planning framework that considers both future water demand and climate change impacts. This framework is based on the Soil and Water Assessment Tool to simulate the watershed hydrology and conduct scenario analyses that consider the uncertainties in both future water demand and climate as well as their impacts on water supply. The framework was applied to water supply planning efforts in the Kankakee River watershed. The Kankakee River watershed model was calibrated and validated to observed streamflow records at four long-term United States Geological Survey streamflow gages. Because of the many model parameters involved, the calibration process was automated and was followed by a manual refinement, resulting in good model performance. Long-range water demand projections were prepared by the Illinois State Water Survey. Six future water demand scenarios were established based on a suite of assumptions. Climate scenarios were obtained from the Coupled Model Intercomparison Projection Phase 5 datasets. Three representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, are used in the study. The scenario simulation results demonstrated that climate change appears to have a greater impact on water availability in the study area than water demand. The framework developed in this study can also be used to explore the impacts of uncertainties of water demand and climate on water supply and can be extended to other regions and watersheds.  相似文献   
6.
In the present study, the influence of aluminium on the regeneration potential of leaf and stem-cuttings of Portulaca oleracea was studied in order to identify a terrestrial plant species as an alternate biomonitoring toolof fresh water environment. The leaves and stem cuttings of theterrestrial plant, P. oleracea grew well in the distilled water producing adventitious and lateral roots. The aluminium treated leaves and stem cuttings showed a reduction in the growthof the adventitious and lateral roots and increase in the decay of leaves and stem cuttings with increasing aluminium concentration. The tolerance index calculated for the leaves and the stem cuttings showed that the leaves were more sensitivethan stems to aluminium. Since all the parameters studied showedconcentration dependent changes, the terrestrial plant, P. oleracea can be considered a suitable biomonitoring tool of fresh water environment besides its usage in the Al toxicity testing.  相似文献   
7.
Sugar industries require a large amount of water for processing, and also generate large amounts of high-degree polluted wastewater. To maintain the water balance in the industry, it is imperative that effective treatment methods need to be devised to treat the wastewaters. The main aim of the present work is to treat the sugar industry wastewater by combined thermal and electro-oxidation methods with a metal and a catalyst based on ferrous material. Results showed a reduction of 75.6% of COD and 79.2% of colour content with thermal treatment, and 97.8% of COD and 99.7% of colour with combined thermal and electrocoagulation treatments under optimum conditions. These reduction levels are adequate for recycling limits.  相似文献   
8.
• High hydrogen yield is recovered from thermal-alkaline pretreated sludge. • Separating SFL by centrifugation is better than filtration for hydrogen recovery. • The cascaded bioconversion of complex substrates in MECs are studied. • Energy and electron efficiency related to substrate conversion are evaluated. The aim of this study was to investigate the biohydrogen production from thermal (T), alkaline (A) or thermal-alkaline (TA) pretreated sludge fermentation liquid (SFL) in a microbial electrolysis cells (MECs) without buffer addition. Highest hydrogen yield of 36.87±4.36 mgH2/gVSS (0.026 m3/kg COD) was achieved in TA pretreated SFL separated by centrifugation, which was 5.12, 2.35 and 43.25 times higher than that of individual alkaline, thermal pretreatment and raw sludge, respectively. Separating SFL from sludge by centrifugation eliminated the negative effects of particulate matters, was more conducive for hydrogen production than filtration. The accumulated short chain fatty acid (SCFAs) after pretreatments were the main substrates for MEC hydrogen production. The maximum utilization ratio of acetic acid, propionic acid and n-butyric acid was 93.69%, 90.72% and 91.85%, respectively. These results revealed that pretreated WAS was highly efficient to stimulate the accumulation of SCFAs. And the characteristics and cascade bioconversion of complex substrates were the main factor that determined the energy efficiency and hydrogen conversion rate of MECs.  相似文献   
9.
The adsorption of chromium(VI) onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of contact time, adsorbent dose, Cr(VI) concentration, pH and temperature were investigated. The two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q 0) was found to be 120.5?mg Cr(VI) per g of the adsorbent. The adsorption followed the second-order kinetics and was found to be maximum at pH 2.0. The pH effect and the desorption studies showed that ion exchange mechanism might be involved in the adsorption process. The effects of foreign ions such as chloride, sulphate, phosphate, selenite, molybdate, nitrate and perchlorate on the removal of Cr(VI) have been investigated. The removal of Cr(VI) from synthetic ground water was also tested. The results show that ZnCl2 activated coir pith carbon is effective for the removal of Cr(VI) from water.  相似文献   
10.
Environmental Science and Pollution Research - Polyvinylidene fluoride (PVDF) blended with varying concentrations of titanium nanotubes (TNT) was electrospun to result in a nanocomposite filter...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号